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The method which permits the determination of a large number of critical 
Rayleigh numbers and respective critical motions is applied to the determina- 

tion of convection stability boundaries of a two-layer system. The method 
consists essentially of reducing the problem to the algebraic problem of eigen- 
values by discretizing the equations by the method of finite elements or finite 
differences. Only the scheme of the method based on discretization by finite 
elements is then presented. 

Gale&in’s method [l] is generally used for determining critical Rayleigh numbers 
and related critical motions in a closed cavity. As a rule, the results are valid only 
for the determination of several lower layers of the spectrum and, when passing to a 
cavity of different shape it is necessary to use the system of basis functions. 

Application of the proposed method to the determination of the spectrum ofcritical 
Rayleighnumbers and critical motions of a two-layer system does not present great difficult- 
ies, and is demonstrated here on the example of a square- cross section cavity filled with 

two immiscible fluids in equal proportions. It is assumed that the two fluid interface is 

horizontal but n&subject to deformations(highsurface tension) and lies in the cavity middle. 
Therm0 capillary effects are disregarded. Below, weconsider two cases: a cavity With solid 

perfectly heat-conducting walls, and a convection cell of an infinite horizontal fluid 

layer (solid horizontal boundaries and free side boundaries). 

1. The use of this method requires that the problem be formulated in variations, 
We obtain the respective functional by formulating the equations for neutral plane 
perturbations of equilibrium of the incompressible fluid in terms of the stream function 

9 and vorticity cp, and the perturbation of the equilibrium temperature T 

A+-cp=O, Acp-jfx++O, AT-Jfx$=O (1.1) 

(R = gpAl* I (vx), A = iFI a2 + a2 I ay2) 
Parameters I, v / I and (v / I) [Av / (figx)]‘Is , where 2 is a characteristic 

dimension, A the temperature gradient, and the remaining notation conventional, 
are chosen as units of length, velocity, and temperature, respectively. 

Solutions of Eqs. (1.1) yield the extremum of functional 

J = S{ -$++z$~++P- (G)” - 
s 

(1.2) 
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with boundary conditions for + and Q, that correspond to free or solid boundaries, and 
the conditions for i” relevant to thermally insulated or perfectly heat-conducting 
boundaries, 

The functional for a two-layer system is the sum of functionals of the form (1. Z), 
since the reduction to dimensionless form with respect to parameters of one of the 
fluids yields different coefficients of equations for the upper and lower fluids 

AT(k) - 1/z @f) if.$?. z.z 0, k= 1,2 

a(l) = 1, a(2) = &, ($1) = 1, b(2) = XrXr 

in which, here and subsequently, indices 1 and 2 denote quantities related to the 
upper and lower fluid layers, respectively. For the units of length, velocity, and 
temperature in (1.3) we use, respectively, the half-length of the square side I, ‘vl / I, 

and (Ye I 1) L&y, / (J&gxl)]“z, where AI represents the equilibrium tempera- 

ture gradient of upper layer. 
Equation (1.3) contains four dimensionless parameters: the Rayleigh number I$ = 

g@,Z4A, / (vrxr) and the ratio of the upper and lower fluid [layer] characteristics 

x, = Xl f x2, Xr = Xl/ x2, & = VlB2 j @2h)- 

These equations must be complemented by conditions at the fluid interface (y = 

1). Absence of vertical displacements of the interface and the equality of horizontal 

velocities and temperatures imply that 

The continuity of shearing stresses and heat fluxes is defined by formulas 

qr'pl') = pt, dW tlT@' 
xray =x-- 

( 1.4) 

(I.51 

The conditions at the interface contain one more parameter ?)r which is the ratio 

of the upper and lower fluid coefficients of dynamic viscosities. 
Along the solid perfectly heat conducting horizontal boundaries of the cavity the 

following relations are satisfied: 

I#+ = 0, T = 0 (y = 0,2) (1.6) 

and the conditions at the perfectly heat conducting solid side boundaries are of the 

form 
+3&Z 0, T=O (x=0,2) 

(1.7) 

In the case of free boundaries (the side boundaries of the convection cell) these 

conditions are of the form 
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The complete functional, whose extcemum is obtained by solving Eqs. (1.3) with 
boundary conditions (1.4) - (1.8), is of the form 

where integration is carried out over the part of the cavity occupied by the respective 
fluid, and was constructed by the authors. 

2. Let us reduce the problem to the algebraic one of eigenvalues.In conformity with 
the concept of the finite elements method we decompose the [cavity] cross section in 
a certain number of triangular elements. The most convenient form of decomposition 
is that in which one of the sides of every element lies on the interface (Fig. 1). This 
allows to represent integrals J(l) and J@) in (1.9) as the sum of integrals taken 
over individual elements. and the integral along the interface as the sum of integrals 

over individual segments. 

YC 
21’ 

By approximating functions 9, cp, and 
T inside each element (in both fluids)by 

I first power polynomials in 5 and y it is 

t’^ @ / 
1 

t I 0 t 

possible to represent functional J in terms 

of values of 9, cp, and T at nodal points 
coinciding with vertices of elements. Varia- 
tion of J with respect to these values yields 

a system of linear algebraic equations in 
which the unknowns are: values of the 

stream function 9 at inner points of the 
region (except the interface where* = O}, 
the values of vorticity cp at inner points, 

I AZ at rigid boundaries, and at the interface, 
and the values of temperature T at inner 

D 2~ z points, on heat insulated boundaries and at 

the interface [of fluids]. By eliminating cp 
and T from the unknowns the system is 

Fig. 1 
reduced to a system of equations in * at 
N inner nodes. 

To simplify the co~~ction of the matrix of this system it is convenient to express 
the vorticity and temperature at the interface and boundaries of the cavity entirely in 
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terms of variables at inner points. For nodes lying at the interface this can be achiev- 
ed, for example, in the following manner. 

We expand variables in border nodes in Taylor series 

where h, is the distance to the nearest border node in the upper fluid and ha that to 
the nearest node in the lower fluid; the zero subscript denotes quantities at the intec- 
face and the prime at border nodes. 

With the second formula of (1.5) taken into account, from (2.1) we obtain the fol- 

lowing formula for T, in terms of values at border nodes: 

To = (xrT1’ + $- T,‘) (X’ -i- -g,’ (2.31 

and, taking into account the second of conditions( 1.4), the first of conditions (1.5), 
and the first of Eqs. (l-3), from (2.2) we obtain for vorticities cpo(‘) and ‘p~(~) at 
the interface the formulas 

(2.4) 

(their values for the first and second fluid are different), 
Formulas (2.3) and (2.4) enable us to reduce the input system to one of 3N 

algebraic equations. 
For convenience of exposition we write this system in matrix form. We introduce 

column vectors {$}, {cp} , and{ T}whose elements represent the values of stream and 

vorticity fi.mctions, and of temperature at the nodes. We also introduce matrices 
(qcp), ($T), (qrp), (cp$), (TT), (Z’$) of order N which make it possible to repres- 
ent the system of algebraic equations in the form of three matrix equations each of 
which is obtained by varying the functional with respect to 9, cp, and T 

(@PI (cp> + VB (G? G? = 0 

(VP) {VI -I- (TN {+I = 0 

(TO {U + I/Z(Q$ ($1 = 0 

Eliminating { cp} and {T} from these equations we obtain for the values of 7-1, 
in nodes the system of equations 

[(M) - R-' (E)l {$> = 0 (2.5) 

where (E) is a unit matrix, and the N order matrix (M) is related to the matrices 

defined above as follows: 

(M) = - (~~)-l(~~~(~~)-l(~~~ (~~)-l(~~) (2.6) 

Equations (2.5) represent a problem in eigenvalues, where the latter are quantities 
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inverse of the critical Rayleigh numbers, while the eigenvectors represent the set 
of values of I$ that correspond to critical motions. 

Note that the matrices used in (2.6) can be calculated by the same procedure for 
cavities of any arbitrary form, with the necessary alterations of coordinates of the 
element nodal points. 

The eigenvalues and eigenvectors of system (2.5) are conveniently determined by 

the power method [Z] beginning with the highest absolute value (the lowest critical 
Rayleigh number). The eigenvalues presented below were calculated by the method 
of reduction [2]. 

3. Let us consider some of the computation results, The lower four Critical 

motions for x, = xr = 9,8 = q,. = 0.5 and Rayleigh numbers 27530 (a), 28710 
(b), 51640 (c), 51820 (d) in a cavity with solid boundaries are shown in Fig. 2, 

a b Fig. 2 C d 

b Fig. 3 d 

a b C d 

Fig. 4 
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and in the convection cell of an infinite horizontal fluid layer for Rayleigh numbers 
13670 (a), 16480 (b), 23050 (c), 30280 (d) they appear in Fig. 3. The figures 

at the center of vortices indicate the maximum absolute values of the streamfunction 

of the particular vortex (vorticity). 

With the above values of parameters the conditions of convection onset are differ- 

ent for the upper and lower [layer] fluids. If Rayleigh numbers determined separately 
by the equilibrium temperature gradients and the respective parameters of the upper 

and lower fluid RI = &All4 i (vIxl) and R, = g$,A,P / (v~x~)~ then for such para- 
meters R, = 2R,. 

Hence, in the absence of thermal and dynamic interaction over the interface, 

on reaching the threshold Rayleigh number, motion would appear in the upper fluid, 
while the lower one would remain in equilibrium. 

Owing to the interaction over the interface motion is simultaneously originated in 
both fluids (see Figs. 2, a and 3, a), but the intensity of motion in the upper fluid is 

considerably higher than in the lower. It is interesting that in a cavity with solid walls 

(Fig. 2, a) the motion in the lower half decomposes into a system of four vortices of 
which the upper two are apparently induced bjr stresses in the interface, and the two 

lower ones are due to buoyancy. 
Similar structures were obtained in nonlinear computations [S], where finite ampli- 

tude convective motions in a two-layer system were numerically determined. The 
present ~v~tigation shows that there are no grounds for interpreting such motions as 
the consequence of nonlinear effects. 

Examination of some of the critical motions will show the somewhat unexpected 
effect of the interaction over the interface. In the third and fourth critical motions 

the circulation intensity in the lower fluid is higher than in the upper, unlike previous- 

ly (although the Rayleigh numbers are in inverse relation). The third motion is similar 
to the first, and the fourth to the second (this is particularly noticeable in the case of 

a cell with free side boundaries, where the pattern of motions is simpler, Fig. 3). 
kr connection with this we may again recall the nonlinear computations in [3] which 

had disclosed that as the temperature difference at horizontal boundaries increases in 

a similar situation (R, < R,) the finite amplitude motion in the lower fluid may 

exceed the intensity of motion in the upper fluid. This is apparently explained by the 

admixture of a third critical motion to the motion ori~nating at the stability ~reshold. 

Four lower critical motions are shown in Fig.4 for the system water-mercury at a 

temperature of 20°C and Rayleigh numbers 32780 (a) ,33355 (b), 89029 (c), 110732 (d). 
The ratio of Rayleigh numbers determined by parameters of the first and second fluids 
is in this case RI = 63.4 R,. It is seen that in this situation the motions following the 
threshold one have a complex pattern, while the onset of counterflows in the threshold 
motion pattern at the interface is prominent. 

The authors thank E. M. Zhukhovitskii for discussing the results of this investigation. 

REFERENCES 

1, G e r s h u n i, G. Z. and Z h u k h o v i t s k i i, E. M., Convective Stability 
of Incompressible Fluid. Moscow, “Nauka”, 1972. 



Equilibrium boundaries of a two-layer system 1097 

2. F a d d e e v, D. K. and F a d d e e v a, V. N., Computational Methods of 
Linear Algebra. Moscow, Fizmatgiz, 1960. 

3. Simanovskii, I. B., Numerical investigation of convection in a system 
of two immiscible fluids heated from below. In: Convection Flows and Hydro- 
dynamic Stability. Izd. UNTs Akad.Nauk SSSR, Sverdlovsk, 1979. 

Translated by J. J. D. 


